Steric constraint in the primary photoproduct of sensory rhodopsin II is a prerequisite for light-signal transfer to HtrII.
نویسندگان
چکیده
Sensory rhodopsin II (SRII, also called pharaonis phoborhodopsin, ppR) is responsible for negative phototaxis in Natronomonas pharaonis. Photoisomerization of the retinal chromophore from all- trans to 13- cis initiates conformational changes in the protein, leading to activation of the cognate transducer protein (HtrII). We previously observed enhancement of the C 14-D stretching vibration of the retinal chromophore at 2244 cm (-1) upon formation of the K state and interpreted that a steric constraint occurs at the C 14D group in SRII K. Here, we identify the counterpart of the C 14D group as Thr204, because the C 14-D stretching signal disappeared in T204A, T204S, and T204C mutants as well as a C 14-HOOP (hydrogen out-of-plane) vibration at 864 cm (-1). Although the K state of the wild-type bacteriorhodopsin (BR), a light-driven proton pump, possesses neither 2244 nor 864 cm (-1) bands, both signals appeared for the K state of a triple mutant of BR that functions as a light sensor (P200T/V210Y/A215T). We found a positive correlation between these vibrational amplitudes of the C 14 atom at 77 K and the physiological phototaxis response. These observations strongly suggest that the steric constraint between the C 14 group of retinal and Thr204 of the protein is a prerequisite for light-signal transduction by SRII.
منابع مشابه
Active state of sensory rhodopsin II: structural determinants for signal transfer and proton pumping.
The molecular mechanism of transmembrane signal transduction is still a pertinent question in cellular biology. Generally, a receptor can transfer an external signal via its cytoplasmic surface, as found for G-protein-coupled receptors such as rhodopsin, or via the membrane domain, such as that in sensory rhodopsin II (SRII) in complex with its transducer, HtrII. In the absence of HtrII, SRII f...
متن کاملMolecular modeling of the HAMP domain of sensory rhodopsin II transducer from Natronomonas pharaonis
The halobacterial transducer of sensory rhodopsin II (HtrII) is a photosignal transducer associated with phototaxis in extreme halophiles. The HAMP domain, a linker domain in HtrII, is considered to play an important role in transferring the signal from the membrane to the cytoplasmic region, although its structure in the complex remains undetermined. To establish the structural basis for under...
متن کاملSensory rhodopsin II transducer HtrII is also responsible for serine chemotaxis in the archaeon Halobacterium salinarum.
Previously, we demonstrated that the methyl-accepting protein HtrII is the transducer for photoreceptor sensory rhodopsin II. Here, we provide experimental evidence that HtrII is also a chemotransducer. Using an agarose-in-plug bridge method, we show that an HtrII overexpression strain has a quicker response to serine than does an HtrII deletion strain. Furthermore, an in vivo flow assay demons...
متن کاملPhototactic and Chemotactic Signal Transduction by Transmembrane Receptors and Transducers in Microorganisms
Microorganisms show attractant and repellent responses to survive in the various environments in which they live. Those phototaxic (to light) and chemotaxic (to chemicals) responses are regulated by membrane-embedded receptors and transducers. This article reviews the following: (1) the signal relay mechanisms by two photoreceptors, Sensory Rhodopsin I (SRI) and Sensory Rhodopsin II (SRII) and ...
متن کاملHAMP domain signal relay mechanism in a sensory rhodopsin-transducer complex.
The phototaxis receptor complex composed of sensory rhodopsin II (SRII) and the transducer subunit HtrII mediates photorepellent responses in haloarchaea. Light-activated SRII transmits a signal through two HAMP switch domains (HAMP1 and HAMP2) in HtrII that bridge the photoreceptive membrane domain of the complex and the cytoplasmic output kinase-modulating domain. HAMP domains, widespread sig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 47 23 شماره
صفحات -
تاریخ انتشار 2008